Gestión de datos maestros [MDM] e IA

This article explores how AI-driven solutions like Auto-Enrich AI and Auto-Spec AI revolutionize master data management by automating enrichment, standardization, and governance, ensuring accurate and consistent data across enterprise systems.

MDM Solution Brochure

As featured on...

Índice

Master Data Management is evolving from a reactive, rule-based function into a strategic, intelligence-driven capability.

Traditional approaches often struggle to keep pace with complex, multi-domain data spread across ERP, CRM, PLM, and SCM systems, leaving organizations vulnerable to errors, duplicates, and incomplete records.

Gartner reports that poor data quality costs organizations an average of $12.9 million per year. AI and Machine Learning are transforming this landscape by enabling autonomous processes such as data enrichment, normalization, deduplication, and anomaly detection.

These capabilities allow organizations to proactively maintain high-quality, consistent, and actionable data across customer, product, and MRO domains.

By shifting MDM from a compliance-driven task to a proactive, AI-enabled process, enterprises can turn previously fragmented and error-prone datasets into a single source of truth, fueling better operational decisions, reducing risk, and unlocking new efficiencies across the business.

USE CASES

Processes within master data management include a wide-range of workflows and processes, AI-centric technologies can be deployed across; 

  • Normalization & Standardization of Data Records

  • Enrichment of Master Data Records

  • Deduplication

  • Integrations Across Master Data Domains

  • Gobernanza de datos maestros

In the subsequent sections, we will cover how AI technologies can address some of the most recurring, monotonous and time-consuming challenges within each of these.   

Normalization & Standardization of Data Records

In enterprise environments, the same item is often described in many ways across plants, systems, or regions using different abbreviations, naming conventions, units of measure, or even languages.

This creates inconsistencies that disrupt analytics, searchability, retrieval, matching-logic and cross-functional collaboration

Some of the issues due to these challenges include – difficulty in matching datasets in bulk, duplication arising due to different naming conventions and various challenges in implementing a data governance program.

A major challenge in Master Data Management is that critical item attributes like dimensions, pressure ratings, and material grades, are often buried in free-text descriptions or technical documents such as PDFs, datasheets, technical manuals, Listas de materiales (listas de materiales) o planos CAD.

Esta naturaleza desestructurada dificulta la extracción, normalización o incluso la búsqueda eficaz de estos registros. La IA y el ML, en particular el Procesamiento del Lenguaje Natural (PLN), desempeñan aquí un papel clave.

Los modelos de PLN entrenados, a menudo mediante el Reconocimiento de Entidades Nombradas (REN), pueden analizar descripciones complejas e identificar automáticamente los atributos clave.

Por ejemplo, una descripción de producto como "Válvula de bola con bridas SS316, PN40, DN25" se desglosaría inteligentemente en: Material = SS316, Presión = PN40, Tamaño = DN25y Tipo = Válvula de bola.

Ejemplos:

In a customer master data system, the address of customer A refers to the state “Texas” as “TX” and another record may refer to the state simply as “Texas”, similar inconsistencies in addresses like “Parkway” being referred to as “Pk way” are quite common.

In a Material data system the dimension in the short description of a spare part may be refer to the size in “Inches” or “In” or simply as

Issues like these can lead to Overstocking (in case of material master), duplication in communications (in case of a customer master) and a whole swathe of other issues

Before AI, these challenges were maintained through a library of existing taxonomies which was generally not “holistic”, difficult to maintain & track and required continuous updates and only worked with managed within a structured codebase.

Thanks to AI models that are “context aware” and trained on verifiable, large sets of data;  these inconsistencies can now be weeded out without much effort based on the adopted taxonomy.

The AI model simply needs to be fed information on the taxonomy that is adopted and model takes care of standardization requirements.

Pro Tip: Choose a self-learning MDM software that can be trained on-the-go by the “Human-in-the-Loop” who verifies the changes and approves it

This way, the self-learning system can become truly autonomous, limiting the data steward’s role to an approver.

Deploying AI Models for Data Normalization across Master Data Domains

1. Abbreviation Expansion and Terminology Mapping: AI models trained on industry data understand that “Mtr” = “Meter”, “SS304” = “Stainless Steel 304”, “CS Ball Vlv” = “Carbon Steel Ball Valve”, and so on. They map such variants to standardized terminology.

2. Unit Normalization and Conversion: Whether dimensions are written as “10mm”, “0.01 m”, or “3IN X 5 YDS”, AI can convert and unify them into the preferred measurement system (e.g., metric), and separate compound fields into structured attributes like Width and Length.

3. Language-Agnostic Structuring: Los modelos de IA pueden interpretar descripciones en otros idiomas y formatos locales para garantizar la coherencia global.

Por ejemplo: Recognizing that "Filtros de aceite, 7-1/16 pulg" en español se refiere a un "Filtro de aceite, 7-1/16 pulgadas"y, a continuación, extraerlo y asignarlo correctamente.

Enrichment of Master Data Records

One of the most niggling issues in managing most master datasets has to do with missing information. This is often a result of absent or poor Master data governance practices in the first place. According to Super AGI,

AI data enrichment can improve data quality by up to 90% and reduce processing time by up to 80%

Missing information is tricky to manage since de-duplication, normalization and multi-domain integrations become tricky if the context of a data record is simply not available in the first place.

In the past enrichment of data records was either done manually by a team of subject matter specialists OR through complex automations that required a data warehouse to be maintained in a structured manner.

Building automations in data enrichment earlier required master data software vendors to build data-partnerships to access supplier catalogues, contact data, employee information etc, depending on the data domain in question.

Employing a team of subject matter specialists is quite an expensive proposition. But moreover, the to solve the challenge of missing data also increases, further causing delays and exacerbating the challenges due to poor master data quality.

Agentic AI Systems solve for this challenge as they are both “context-aware” and capable of executing complex tasks like browsing the web, retrieving data from documents and other unstructured sources and filling-in the gaps in the existing data records.

Además, MCP protocols are advancing each day, equipping AI agents with enough information to be able to execute rudimentary as well as complex workflows by leveraging third-party software.

In this manner, purpose-trained AI agents, when equipped with the right resources, can solve for almost all data enrichment challenges autonomously, and at a fraction of the time required.

En el caso de documentos escaneados o archivos de planos de ingeniería, los sistemas de IA utilizan el reconocimiento óptico de caracteres (OCR) combinado con el reconocimiento de patrones para extraer datos tabulares o especificaciones, incluso cuando aparecen en imágenes o planos de ingeniería.

Esto permite a las organizaciones extraer datos de documentos técnicos y transformarlos en registros de datos maestros limpios, estructurados y con capacidad de búsqueda.

Some Applications of AI Agents in Master Data Enrichments

Aplicaciones

1. Automated Attribute Parsing from Descriptions

Los modelos de IA, en particular los basados en PNL y entrenados en conjuntos de datos específicos del sector, pueden extraer de forma inteligente datos estructurados de descripciones de productos o materiales complejas y no estructuradas.

Ejemplo: Conversión de "3-11/16″OD ,7-1/16″LG" en campos estructurados como Diámetro exterior y Longitud en los registros maestros de materiales.

2. Semantic Understanding for Field Mapping

La IA entiende el contexto de las palabras y abreviaturas utilizadas en los distintos sectores (por ejemplo, "LG" = Longitud, "OD" = Diámetro exterior) y las asigna a campos de datos normalizados.

Ejemplo: Reconocer que "BALDWIN 915" se refiere a un fabricante y a un número de pieza, y asignarlos en consecuencia.

3. Unit Harmonization and Conversion

La IA estandariza los diferentes formatos y representaciones de las mediciones en un formato unificado en todo el conjunto de datos, eliminando incoherencias.

Ejemplo: Conversión de "3IN X 5 YDS" a unidades métricas estandarizadas y división en unidades separadas Anchura y Longitud

Missing information such as specifications, manufacturer part numbers, or unit of measure, is a common problem, especially in legacy datasets or third-party imports.

These gaps can hinder procurement, compliance, and analytics workflows.

La IA y el ML ofrecen formas inteligentes de rellenar estos espacios en blanco. Mediante técnicas como la inferencia basada en similitudes, los modelos escanean los registros completos existentes para sugerir valores probables para los incompletos.

For example, if a new item “SKF Bearing 6205” is missing its outer diameter, AI can infer the value (e.g., 52mm) from other identical or similar items already in the database.

In addition, AI can cross-reference internal data with external catalogs or supplier databases to pull enriched details, like dimensions, datasheets, lifecycle data, or part alternates.

Los modelos predictivos, como los algoritmos de regresión o los árboles de decisión, también pueden utilizarse para estimar campos numéricos como la tensión, el par o la presión nominal cuando no se mencionan explícitamente.

Este nivel de enriquecimiento garantiza unos datos maestros más completos y utilizables, minimiza la introducción manual de datos y respalda los esfuerzos posteriores de automatización, abastecimiento y cumplimiento.

It is quite common, especially in the Customer Master Data Domain, to stumble across instances where a data record is missing and email address, phone number or an address.

With a combination of MCP protocols & AI agents, this missing information can be enriched by retrieving data from public sources like LinkedIn and even subscription-based third-party sources like DnB o ZoomInfo.

A similar approach is now being increasingly applied to spare parts and MRO data, where missing or inconsistent details can severely impact maintenance and supply chain performance.

Spare parts data often suffers from incomplete descriptions, missing technical attributes, or duplicate entries spread across multiple systems. This leads to confusion during part searches, delays in maintenance, and redundant procurement.

AI-driven data enrichment helps address these challenges by making spare parts records more complete, consistent, and actionable. By analyzing equipment records, supplier catalogs, and historical data, AI systems can:

1. Infer missing attributes such as part type, material grade, or operating specifications.

For example, in raw material data for chemical plants, AI can infer missing purity levels, hazard codes, or storage instructions by comparing similar materials in the database.

2. Identify manufacturer and part number patterns para la armonización entre proveedores.

In procurement catalogs, AI can detect duplicate SKUs that exist under slightly different names or vendor codes, helping avoid redundant orders.

3. Standardize naming conventions para la coherencia entre plantas.

For example, in product master data, AI can identify inconsistent categorization, e.g., a smartphone listed under “Accessories” instead of “Mobile Devices”, and correct it for consistent reporting and analytics.

As per a Gartner report, 

Data quality governance priorities, it’s noted that inconsistencies across silos (lack of consistency, completeness, uniqueness of records) are among the most challenging issues for large enterprises.

4. Recommend interchangeable or alternate parts basándose en la similitud de las especificaciones, el uso o los datos históricos de consumo.

For instance, if a record lists only “GSKT, 4BOLT, SS316,” AI can recognize it as a stainless-steel gasket, identify its flange type, and even suggest compatible alternatives in stock or from approved suppliers.

This enriched view of spare parts and product data improves maintenance planning, speeds up procurement, and enables inventory optimization, especially in multi-plant operations where part visibility or product master consistency is often fragmented across sites.

Below is our product video, demonstrating how our agentic solution enriches the data from first and thirs party sources:

Deduplicación de datos

Gartner reports that poor data quality costs organizations an average of $12.9 million per year.

Once the data records have been structured, normalized, standardized and enriched with the help of AI, data deduplication becomes a breeze.

The deduplication process itself doesn’t really deploy much of AI (except in the case of L2 Duplicates), but the preceding steps are key to ensuring accurate de-duplication across the entire dataset.

Duplicate entries in a master data set are typically categorized into 2 buckets – L1 & L2

L1 de-duplication is simple and straightforward, in this case, the entire dataset is de-duplicated based on a single logic.

Example 1: Same Material ID in case of direct materials. 

Example 2: Same email address or phone number in case of a customer master data

Example 3: Same Manufacturer Partner Number (MPN) in case of MRO spare parts data.

Essentially, any data record with the same values in a property that irrefutably identifies the record as a duplicate entry is an L1 duplicate.

There’s hardly any AI that can be used here since the logic is standardized and structured.

This is why master data enrichment is generally a pre-cursors to master data de-duplication since enrichment allows several values to be updated into the system, that can then be leveraged for L1 de-duplication.

L2 duplicates, on the other hand, are far more complex and they’re generally used where the values required for L1 logic to be applied are simply missing.

AI has simply not evolved enough to fully automate L2 duplicate detection.

With that said, AI can make the job far more simpler, club likely duplicates by scanning the entire data record and the dataset itself before assigning a “duplicate confidence score”, that can then be assigned as a task to a human reviewer to either “accept” or “reject” the data records as duplicates.

After the Data Steward “accepts” the data records are generally merged, wherein the data from the 2nd record is deleted after the fields are created in the 1st record. 

Below is a video demonstarting how our AI agent deduplicates the data:

Master Data Integrations for Multi-Domain Success

One of the more well-known critiques of a master data system is the fact that each master dataset, in practice, exists in isolation from the others in disparate organization systems.

To truly understand the performance of any given organizational function, interpreting data across master data domains is crucial.

Example 1: It’s important to know how many customers can be reached through any given marketing communication channel but it’s also important to know which products do these consumers favour the most, requiring deep integrations with product master data

Example 2: It’s important to know how many spare parts are in the procurement platform for provisioning for production activities but it’s also more important to know which of these parts required for upkeep of critical assets, these will be the critical spare parts

This is only possible with deep integrations of asset master data with spare parts material master.

Gobernanza de datos

Gobernanza de datos maestros tienen por objeto garantizar que los datos maestros sean precisos, seguros, normalizados y conformes con las políticas internas y la normativa externa.

Sin embargo, a medida que los volúmenes de datos crecen y se vuelven más complejos en los sistemas distribuidos (ERP, PLM, CRM, SCM, etc.), la aplicación manual de las políticas de gobernanza se vuelve inescalable y reactiva.

Machine Learning brings proactive, intelligent automation into core data governance functions by enabling dynamic policy enforcement, anomaly detection, and intelligent decision support.

Estos modelos pueden supervisar y mejorar continuamente la calidad de los datos, al tiempo que reducen la carga manual de los administradores de datos.

Aplicaciones:

1. Smart Policy Checks

AI learns what clean, approved records usually look like and checks new entries for missing or incorrect fields, even if there’s no set rule.

Por ejemplo: Si la mayoría de los registros de motores eléctricos tienen rellenado el campo "Tensión" y un nuevo registro no lo tiene, la IA lo marca de inmediato.

La IA examina registros anteriores, aprende qué campos van juntos y utiliza ese conocimiento para detectar errores.

2. Spotting Anomalies and Errors

Los modelos ML detectan valores o combinaciones inusuales en los datos que no se ajustan a los patrones normales.

Por ejemplo: A “PVC pipe” listed with “1000 PSI” is flagged, because PVC typically can’t handle that much pressure.

La IA se hace una idea de lo que es normal para cada tipo de artículo y detecta los valores atípicos mediante modelos de reconocimiento de patrones como los bosques de aislamiento o los autocodificadores.

3. Automated Record Approvals

La IA puntúa los registros nuevos o actualizados en función de su limpieza y exhaustividad. Los registros de alta confianza pueden aprobarse automáticamente, mientras que los de baja confianza se envían a un humano para su revisión.

Por ejemplo: Un artículo clasificado como "Perno hexagonal", con todos los campos rellenados correctamente y que coincide con los datos anteriores, se aprueba automáticamente.

Los modelos ML calculan una puntuación de confianza en función del grado de coincidencia del registro con las normas existentes.

4. Helping Data Stewards in Real Time

La IA ayuda a los administradores de datos mientras trabajan sugiriendo valores, señalando campos que faltan o indicando posibles problemas.

Por ejemplo: Al revisar un registro de material, un administrador ve sugerencias de IA para los campos que faltan y recibe alertas si algo no coincide con entradas similares.

Los modelos NLP y ML se ejecutan en segundo plano y muestran sugerencias y advertencias inteligentes directamente en la interfaz.

Below are some use cases:

Customer Master Data:

In large multinational enterprises, new customer records often arrive via multiple channels, CRM portals, partner submissions, or internal uploads.

Missing email addresses, tax IDs, or incomplete billing information can delay invoicing and create compliance risks. AI governance systems automatically detect missing mandatory fields, enrich them using verified internal and external sources, and flag likely duplicates at the point of entry.

For example, if two records show “Acme Corp” and “Acme Corporation,” the system flags a potential duplicate and prevents redundant entries. This ensures high-quality customer data while reducing manual effort.

Materials and Spare Parts Data:

In the Materials or MRO domain, missing specifications, manufacturer part numbers, or unit-of-measure information is common, especially in legacy datasets or third-party imports.

These gaps hinder procurement, maintenance planning, and analytics workflows. AI-driven enrichment can infer missing values from existing records, cross-reference supplier catalogs, and standardize naming conventions across multiple plants.

Por ejemplo, a new record “SKF Bearing 6205” missing its outer diameter can be automatically enriched with the correct value from similar items in the database.

Likewise, a record listed as “GSKT, 4BOLT, SS316” can be enriched to specify a stainless steel gasket, identify flange type, and suggest compatible alternates.

Predictive models, such as regression algorithms or decision trees, can also estimate numeric fields like voltage, torque, or pressure ratings when explicit values are absent.

By identifying anomalies, harmonizing part numbers, standardizing descriptions, and suggesting alternates, AI ensures that the materials master becomes a reliable, actionable source of truth.

Below is our Verdantis’ data governance solution video: 

Diseño e implantación de la IA en MDM

Aunque las ventajas de la IA/ML en MDM son evidentes, su adopción con éxito requiere una integración meditada con la arquitectura empresarial y los modelos de gobernanza:

  • Calidad de los datos de formación: El rendimiento de los modelos de IA/ML está directamente ligado a la calidad y representatividad de los datos históricos utilizados para entrenarlos.

  • Contexto específico del ámbito: Los modelos estándar suelen requerir un ajuste o reajuste para adaptarse a los matices específicos de los datos de ingeniería, fabricación o aprovisionamiento.

  • Explicabilidad y confianza: Users must be able to trace and understand how AI arrived at a particular decision or suggestion, especially in regulated industries.

  • Human-in-the-Loop (HITL): AI systems should be designed to augment and not replace the data stewards, allowing human oversight where needed and creating feedback loops for continuous improvement.

Conclusión

AI and ML are not just enhancing Master Data Management, but they are redefining what is possible. These technologies bring a level of speed, adaptability, and intelligence that manual and rule-based systems cannot match.

For MDM, MRO data management, and data governance, AI is no longer an emerging concept – it is a necessary capability for scaling data quality, accelerating decision-making, and future-proofing enterprise operations.

A medida que las organizaciones sigan adoptando la transformación digital, aquellas que integren la inteligencia impulsada por la IA en sus prácticas de datos maestros estarán mejor posicionadas para operar con agilidad, precisión y conocimiento.

About the Author

Foto de Kalpesh Shah

Kalpesh Shah

Kalpesh ha dirigido la gestión de programas en Verdantis durante los últimos 11 años. Cuenta con una amplia experiencia en servicios y productos relacionados con materiales y datos de proveedores, y ha sido responsable de soluciones de entrega de vanguardia en toda la organización.

Entradas relacionadas

Download The File

Your data is 100% protected with us via our non-disclosure agreement.

Sus datos están seguros y se utilizan exclusivamente para los fines previstos. Damos prioridad a su privacidad y protegemos su información.